
Management Science Research Report Number #602 

Polyhedral Methods for the 
Maximum Clique Problem 

Egon Baias 
Sebastian Ceria 

Gerard Cornuejols 
Gabor Pataki 

February 1994 

Graduate School of Industrial Administration 
Carnegie Mellon University 
Pittsburgh, PA 15213 

2^ 

This research.was support in part by a National Science Foundation 
Gr^t-'Number DDM-9201340 and the Office of Naval Research grant 

/ NÖ0014-89-J-1063. ) 
/ 

Management Science Research Group 
Graduate School of Industrial Administration 

Carnegie Mellon University 
Pittsburgh, PA 15213 ' 

,f 

19950922 081 
BTIC CKIAIJTT 1E5?: 



Polyhedral Methods for the Maximum Clique 
Problem 

Abstract 

This paper presents an integer programming approach to the maximum 

clique problem. An initial linear programming relaxation is solved and, 

when there is an integrality gap, this relaxation is strengthened using one 

of several tightening procedures. This is done through the addition of 

cutting planes to the linear program. The bulk of the paper deals with 

theoretical and computational issues associated with the generation of 

these cuts. In particular, we describe how to obtain cuts from the 

positive semi-definiteness of an underlying matrix. The various cuts are 

then compared in a computational experiment. These cuts can be 

incorporated into a branch-and-cut algorithm and we report results with 

such an algorithm on some of the DIMACS benchmark instances. 

kmmsi6n l?or " ■■ww-^ 

D^ I STIS    ORA&I 
DS'IC TM O 
ImaaxioYMcaa Q 
Jus t if i s at i on_ - 

liwstvibntimil K* 

Av6i3La"9in?,j Cfäöss 

Blot 

• 

Avail ßßfS/oji? 

:?-?' 
.«^•*-. 



1     Introduction 

A clique in a graph G = (V,E) is a vertex set C C V such that every two vertices of C are 

adjacent. The clique polytope C(G) is the convex hull of the incidence vectors of the cliques 

inG: 

C(G) = conv{x e {0,1}" : x{ + Xj < 1, V(i, j) £ E}, 

where n = \V\. The maximum weight clique problem consists of finding max{wx : x G 

C(G)}. The linear programming relaxation of C(G) 

FC(G) = {ier+: Xi + XJ < 1, V(i,i) i E) 

is sometimes called the fractional clique polytope. This polytope strictly contains C(G) 

whenever G is not the complement of a bipartite graph, and there are several well known 

classes of inequalities which are valid for C{G) but violated by points in FC(G). The 

addition of some of these inequalities to FC(G) gives rise to stronger relaxations of C(G). 

A vertex set S is stable if every two vertices in S are nonadjacent. Clearly, for any stable 

set S of size greater than two, Y,ies xi < 1 is valid for C(G) and strengthens the inequalities 

Xi + XJ < 1 of FC(G) for all i,j € S. 

Our approach in this paper is to strengthen the relaxation FC(G). We start with a very 

simple strengthening, 

SC(G) = {ier+:   £ z; < 1, for k = 1,.. .m} 

where the sets Sk, k = l,...,m, are maximal stable sets with the property that, for any 

(i,j) ^ E, there exists at least one k such that i, j € 5*. Constructing such a family Sk, 

k = 1,... ,ra, is done using a straightforward greedy procedure. The focus of the paper is 

on procedures that achieve further strengthenings in a systematic fashion. We illustrate how 

some recent results on lift-and-project tightening procedures for mixed 0-1 programs can be 

applied to relaxations of the clique polytope such as SC(G). 

In Section 2 we describe three different lift-and-project tightening procedures: the first 

one is the procedure of Balas, Ceria and Cornuejols [1] and is the simplest of the three, 

while the other two can be interpreted as variations of tightening procedures of Lovasz 

and Schrijver [6]. In all three cases the problem is formulated in a higher dimensional space, 

where the resulting relaxation can be tightened by imposing the 0-1 condition on one or more 

variables. The tightened formulation is then projected onto the space of original variables. 



In Section 3, we show how to generate cutting planes that arise from these tightening 

procedures. We can generate the "deepest" cut of the family by solving a linear program. 

In Section 4, we explain how the higher dimensional formulations can be further strength- 

ened by requiring positive semidefmiteness of a certain matrix defined by the newly intro- 

duced variables. This idea is also related to a tightening procedure of Loväsz and Schrijver 

[6], different from those mentioned above. 

In Section 5, we show that finding a deepest cut for the positive semidefinite cuts requires 

the solution of a semi-infinite linear program where the entering column is found by an 

eigenvalue computation. 

Finally, in Section 6, we report on our computational experience. The first part of the 

computational study investigates the quality of the cuts obtained from the various tightening 

procedures. In the second part, we apply MIPO to some of the DIMACS benchmark in- 

stances: MIPO is a general purpose mixed integer program optimizer based on the tightening 

procedure of [1]. 

2    Lift-and-project tightening procedures 

Before we can discuss the algorithms used in our computational study to strengthen relax- 

ations of the maximum clique problem in the z-space of vertex variables, we need to lift 

the problem into a higher dimensional space. Indeed, the tightening procedures are easily 

understood in that higher space. This section discusses several options for the tightening 

step. A projection step is then used to return to the x-space. We delay until Section 3 the 

discussion of algorithms for finding a deepest cut from this projection. 

Let K be a relaxation of the clique polytope C(G) such that C(G) = conv(K°), where 

K° - {x e {0, l}n : x e K). We represent the inequalities defining K by the system Ax > b. 

2.1    The basic lift-and-project procedure 

The following results are from Balas, Ceria and Cornuejols [1], and are also valid for more 

general pure and mixed 0-1 programs. Consider a fixed j G {1,... , n}. 



Procedure 1 

1. Multiply Ax >b with 1 — Xj and Xj to obtain the nonlinear system 

(l-Xj)(Ax-b)   >   0 

x (Ax-b)   >   0. (1) 

2. Linearize (1) by substituting yt for xtXj, i = 1,... ,n, i ^ j, and Xj /or :rj. Co// tÄc 

polyhedron defined by the resulting system Mj(K). 

3. Project Mj(K) onto the x-space. Call the resulting polyhedron Pj(K). 

The calculation of the projection used in Step 3 amounts to eliminating the variables y; by 

taking certain specific linear combinations of the inequalities defining Mj(K). Even though 

the system Mj(K) is small (the number of its nonzero entries is of order n), computing the 

full projection Pj(K) is computationally prohibitive in general. In Section 3, we will show 

how to obtain useful inequalities defining Pj(K). 

It is not hard to see that K° C Pj(K) C K. In fact, Pj(K) has the following considerably 

stronger properties: 

Theorem 2.1 Pj{K) = conv(K n {x : Xj € {0,1}}). 

For t > 2, define Piu...,it(K) = Pit{Pn,.,n-i{K)). 

Theorem 2.2 For any t € {1,..., n}; 

Pilt...,it(K) = conv(K n {x:xj € {0,1}/or j = »i,...,»«}). 

Corollary 2.3 Px n{K) = conv(K°). 

Theorem 2.2 implies the following. 

Property 2.4 For i ^ j, 

conv(conv(K n {x : x,- € {0,1}}) D {x : Xj G {0,1}}) 

= conu(conu(JfC n {x : Xj e {0,1}}) n {x : xi € {0,1}}) 

= conv(K n {x : Xi,x_,- G {0,1}}). 



Theorem 2.2 says that if Procedure 1 is applied repeatedly, each time with respect to a 

different variable Xj, for j e S, the outcome is conv{x € K : Xj € {0,1} for j G 5}. In other 

words, the ordering of iu...,it in the definition of Piu...,it{K) is irrelevant. This justifies the 

simpler notation Ps(K). A further result (see Sherali and Adams [7] and also [1]) states that 

if Step 1 of Procedure 1 is applied repeatedly with respect to several variables Xj, for j € S, 

followed by a single linearization and projection, the outcome is the same as if Procedure 1 

had been applied repeatedly in its entirety. To be specific, consider the following procedure 

for a given S C. {1,..., n}. 

Procedure 1' 

1. Multiply Ax>b with TTieSj xi Ujes2(
l ~ xi) for everV Partition (^i, S2) ofS, to obtain 

the nonlinear system 

JJ Xi n (i - X
J) (Ax ~b)   ^ °»  V5i. s^s S-L SiUS2 = s, s1ns2 = 0. (2) 

ieSi    jes2 

2. Linearize (2) by substituting Xj for x?, p > 2, and yw for Uiew xi, \W\ ^ 2- ^al1 the 

polyhedron defined by the resulting system M'S(K). 

3. Project M'S(K) onto the x-space. Call the resulting polyhedron Ps{K). 

We then have 

Theorem 2.5 P'S(K) = PS(K). 

For proofs of these theorems, as well as their connection with earlier work and further 

details, the reader is referred to [1]. 

2.2    Stronger tightening procedures 

In this section, we use other inequalities (different from (l-Xj) > 0 and Xj > 0) in the multi- 

plication step of lift-and-project tightening procedures. This idea was introduced by Loväsz 

and Schrijver [6]. For a detailed description of this and other lift-and-project tightening 

procedures the reader is referred to Ceria [4]. 

Given any stable set S, the inequality x(S) < 1 is valid for C(G). The modified lift-and- 

project tightening procedure is defined as follows: 



Procedure 2 

1. Multiply Ax > b with 1 — x(S) and xt-, i G S, to obtain the nonlinear system 

(1 - x(S))(Ax - b)   >   0 

Xi(Ax - b)   >   0,    i G S. (3) 

2. Linearize (3) by substituting yu for xtXf, £ = 1,... , n, i £ S, and xt- for x?, i G 5, <m^ 

setting yu = yu- Call the polyhedron defined by the resulting system Hs(K). 

3. Project Hs(K) onto the x-space. Call the resulting polyhedron Rs(K). 

Appying Procedure 2 amounts to convexifying over all the variables in S as shown by 

the following theorem. 

Theorem 2.6 RS(K) = conv(K n {x : x{ € {0,1}, for all i € S}). 

Proof: We claim that applying Step 1 of Procedure 2, then carrying out the multipli- 

cations in (3) and substituting xt- for xf, i e S, yields the same nonlinear system, say (*), 

that we obtain by applying Step 1 of Procedure 1' with respect to S, carrying out the mul- 

tiplications in (2) and substituting a;,- for zf, p > 2. Then the theorem follows since the 

linearization and projection of (*) onto the x-space yields conv(KC){x : xs- € {0,1}, Vz G S}) 

by Theorem 2.5. 

To prove the claim, notice that after carrying out the multiplications in (2) and substi- 

tuting Xi for xf, i€ 5, p > 2, all those terms containing the product x,Xj for some pair 

i,j € S become 0 since, for each such pair, 1 — x,- — Xj > 0 is part of the system Ax — b > 0, 

and x,(l - Xi - Xj) > 0 implies -x,Xj > 0. Thus the only inequalities of (*) with nonzero 

terms are 

• the inequality corresponding to the partition (Si,S2) with 5"i = 0 and S2 = S which is 

Ax — b — ^2(Axxi — bxi) > 0. 
ies 

• the \S\ inequalities corresponding to partitions of the form (S\, S2) with Si = {i}, S2 = 

S \ {i}, which are 

Axxi — bx{ > 0, for i G S. 



But these are precisely the inequalities obtained by executing the multiplications in (3), 

which proves the claim. □ 

Let T be a set of vertices of G and let S = {Si,..., S*} be a cover of the vertices of T 

by stable sets Sj C T. When S is a partition, this is a ^-coloring of G(T), but in general we 

will not choose S to be a partition. For 2 < t < k, define i?sa st(K)'= Rst(Rsi,...,st-i{K))- 

Theorem 2.7 For any t G {1,. • •, k), 

RSl sk{K) = conv(K n {x : x{ G {0,1}, Vi <E Si U ... U 5t}). 

Proo/; By induction on t. For 2 = 1, the statement is just Theorem 2.6 applied to S = Si. 

Suppose the statement is true for t — 1,... ,p - 1 and let t = p. Then 

RSl sp(K)   =   RSp(Rsu...,sp^(K)) (4) 

=   RSp{conv(K n {x : xt € {0,1}, Vi G Si U ... U Sp_i})) (5) 

=   conv(conv(K C\ {x : Xi G {0,1}, i G Si U ... U Sp_i}) 

n{x:  xtG{0,l}, VieSp}) (6) 

=   conv{Kf]{x: x,-G {0,1}, Vi G Sa U...USP}) (7) 

where (4) follows from the definition, (5) from the induction hypothesis, (6) from Theorem 2.6 

and (7) from Property 2.4. □ 

Corollary 2.8 RSl,...,sk{K) = conv(K f) {x; G {0,1},* G T». 

Proof: Follows directly from Theorem 2.7. □ 

Applying the previous result with T = V implies that we can obtain C(G) in a number 

of steps equal to the cardinality of any stable set cover of the vertices of G. Of course, this 

number is bounded below by the chromatic number of G. In a random graph with edge 

probability of 1/2, one can obtain a stable set cover of size in the order of n/log2n with 

probability 1 — o(l). 

It is possible to further generalize these results by allowing for multiplication with in- 

equalities corresponding to more than one stable set in S. In particular, we are interested 

in the following extension: 



Procedure 3 

1. Multiply Ax > b with 1 — x(Sj), j — l,...,k and X{, i G T to obtain the nonlinear 

system 

(l-x{Sj))(Ax-b)   >   0,    j = l,...,k 

Xi(Ax - b)   >   0,    ie T. (8) 

2. Linearize (8) by substituting yu for XiXt, £ = l,...,n, i € T, and X{ for xf, i £ T, 

and setting yu = yu- Call the polyhedron defined by the resulting system H\,„k{K). 

3. Project Hi„.k(K) onto the x-space. Call the resulting polyhedron Ri...k{K). 

The special case where T = V and each Sj reduces to a single vertex of G, say Sj = {j}, 

is one of the tightening procedures proposed by Loväsz and Schrijver [6]. When T ^ V 

and Sj = {j} for j € T, let us denote by NT(K) the polyhedron obtained in Step 3 of 

Procedure 3. It is easy to see that, for any S, 

Ri.AK) C NT(K) 

and, in fact, the relaxation R\_..k{K) can be substantially stronger when some of the S^'s in 

S have cardinality greater than one. For example, when K = FC(G), Theorem 2.6 implies 

that 

Ri...k(K) Q nk
j=1conv(K n {x : x{ e {0,1} for all i G Sj}) 

whereas it can be shown that 

NT(K) = f)jeTconv(K fl {z : Xj € {0,1}}). 

3    Lift-and-Project Cutting Planes 

In this section we address the generation of cutting planes for the maximum clique problem 

max{wx : x € K, Xj € {0,1}, j = 1,..., n}, (9) 

where, as before, K = FC(G) or any valid relaxation of C(G). The cut generation algorithms 

presented in this paper work indifferently for the maximum cardinality or maximum weight 

clique problems. 



3.1     Cut generation linear program for Procedure 1 

First, we consider Procedure 1 discussed in Section 2. Balas, Ceria and Cornuejols [1] 

showed that in order to generate a valid inequality ax > ß for Pj(K) that cuts off x (the 

current solution to the linear programming relaxation of (9)) by the largest amount, where 

0 < Xj < 1, we need to solve the following linear program: 

max uAx + UQXJ 

subject to 

uA - vA + {u0 - v0)ej   =      0 (10) 
ub   =   -1 

vb + v0   =   —1 

u,v   >     0. 

Substituting v0 — -vb - 1 into uAj - vAj + u0 - v0 = 0, and then substituting 

u0   =   -uAj + vAj — vb- I 

=   -uAj + vAj + ub-vb 

into the objective function, yields the linear program 

max - u((b - AJ)XJ + Ax) + v(b - AJ)XJ 

subject to 

(-u + v)Ai   =      0   i^j (n) 

ub   =   -1 

u,v   >     0, 

where A; denotes the ith column of A. Then the cut ax > ß is obtained as follows: 

a;    =   uAi i^ j 

aj   =   ub + v(Aj - b) 

ß    =   ub=-l. 



3.2    Cut generation linear programs for Procedures 2 and 3: an 

illustration 

Now we discuss the generation of cutting planes for the stronger tightening procedures of 

Section 2. They require solving linear programs whose size depends on the sets S or T. We 

illustrate the cases where S is a stable set of size 2 (Procedure 2) and T is a clique of size 2 

(Procedure 3). 

Suppose S = {j, £}., where (j,£) £ E in Procedure 2. A deepest cut (i.e. an inequality 

ax > ß valid for Rs(K) which cuts off x by the largest amount) is obtained by solving the 

linear program: 

max  — u((b — AJ)XJ + Ax) + v^{b — AJ)XJ — u((b — Af)xt + Ax) + ve(b — At)xn 

subject to 

(-u + vj)Ae   +(-u + ve)Aj =   0 

(-u + vi)Ai =0       i^j,£ (12) 

(-u + v£)Ai =   0      i^j,£ 

ub =   -1 

u,v*,ve >   0 

and defining 

a,- = uAi i ^ j,£ 

aj = ub + vi(Aj — b) 

at — ub-\- ve(A( — b) 

ß = ub=-l. 

The linear programs (11) and (12) optimize over the sets conv(K D {x : XJ € {0,1}}) 

and conv(K f] {x : Xj,X( G {0,1}}), respectively. The corresponding inequalities ax > ß 

belong to the family of disjunctive cuts, to which the strengthening procedure of Balas and 

Jeroslow [3] can be applied. 

Now let T = {j,^}, where {],£) € E. We consider Procedure 3 where S\ = {j} and 

^ = {£}. The deepest cut ax > ß is obtained by solving the linear program: 

10 



max - uj{(b - Aj)xj + Ax) + vj{b - Aj)x, - ul{{b - At)xt + Ax) + ve(b - Ae)x£ 

subject to 

(-uj + vi)Ae   +(-ut + vt)Aj =   0 

(-uj + vj)Ai =0      i^j,t (13) 

(-ut + v*)Ai =   0     i^jj 

ujb +u£b =   -2 

u^,v^ue,ve >   0 

and defining 

a; = (uj + u()Ai i^j,£ 

OLj = (uj - vj)b + ueAj 

ai = (ue - ve)b + ujAt 

ß = ujb + ueb=-2. 

The linear program (13) is significantly larger than (11) but it is closely related to it and 

this relationship can be used to avoid solving (13) from scratch. Indeed, assuming that we 

have solved (11) for two different fractional components of x, say j and £, we can combine 

the resulting optimum solutions to obtain a feasible solution to (13). Then, using sensitivity 

analysis, one can improve upon the combined solution by noting that the difference between 

linear program (13) and the two versions of (11) is two pairs of aggregated constaints, namely 

(_ui + vi)At = 0 and (-«' + v£)Aj = 0 on the one hand, and ujb = -1 and ueb = -1 on 

the other hand. Increasing the RHS of one constraint in the pair by 8 in one linear program 

and decreasing it by 8 in the other will improve the solution of (13) at a rate given by the 

difference of the corresponding dual variables in (11). The updated u3, v3, ue, ve yield a 

stronger cut in general, although not necessarily the strongest for (13). 

The linear programs (12) and (13), just like (11), can be restricted to the space of 

fractional components in x, and the resulting cuts can be lifted, as explained in [1]. 

11 



3.3    Cut generation linear program for NT(K) 

In this section, we give the linear program that needs to be solved for finding a deepest cut 

which is valid for NT(K). Remember that Nj(K) arises from Procedure 3 by imposing the 

disjunctions VJ€X(XJ = 0 V Xj = 1). 

We start with the higher dimensional relaxation that arises in Step 2 of Procedure 3. It 

contains the constraints 

x -z3 
-yJ = 0 

Az3 -b4 > 0 

z3- = 0 

Ay3 
-byi > 0 

tf -yi = 0 

4 +2/o 

for all j 6 T, together with the symmetry constraints 

vi-vt = o 

for all j, k G T such that j < k.  Any valid inequality ax > ß for NT(K) is obtained from 

this system by eliminating the y and z variables. This yields: 

Ejex aJ = a 

a3 —vPA —u0ej = o, Vier 
a3 —v3A -vfa - Efc>j wjkek + J2e<j wtjet = o, Vier 

u3b > ßi, Vier 
v3b +vJo 

EjeT ßj 
u3, V3 

> 

> 

> 

ßj, 

ß 
0. 

^jeT 

If we eliminate the aJ's, we can write the cut generation linear program for finding the 

deepest valid cut for NT(K) as follows. 

12 



Max    ^2 u3(-Ax) + Y^ uo{~xj) 
jeT jeT 

(uJ - v3)A + (wo - vo)ej ~ £ wok&k + 2 Wtiei   =   °>    ^j e T 

k>j i<j 

ujb   >   ßh V? € T 

vjb + v3
0   >   ßi, VjGT 

£#    >   0 

uJ, uJ   >   0. 

Note that it is possible to solve this linear program by restricting it to the subspace 

corresponding to the fractional components of x. Indeed, it can be shown, using an argument 

similar to that in [1], that the solution obtained in this subspace can be lifted optimally into 

a deepest cut for the full space. 

4    Positive Semi-Definite Constraints 

In this section and the next, we show how to further strengthen the polytope NT(K). For 

ease of notation, we present the results for T = V. Once again, we first derive the results in 

the higher dimensional space. 

The idea of using a positive semi-definite (psd for short) constraint in higher dimensional 

formulations of 0-1 integer programs appeared first in [6] : if in Step 2 of Procedures 2 or 3 

all the XiXi products appear 1 <?',£< n, then it is a valid constraint to enforce psdness 

of the symmetric matrix Y substituted for xxT. In the case where K = FC(G), the higher 

dimensional relaxation M(K) can be substantially strengthened by psdness. In this section, 

we show how to construct a closely related family of constraints. 

We denote psdness of a matrix A by writing A >z 0. Let Y be the symmetric matrix of 

our variables yu, diag Y = x,Y0 some n x p matrix formed from elements of Y, p < n, and 

S >z 0 some fixed p x p matrix. We consider the following psd constraint 

Y - Y0SY? h 0. (14) 

The separation problem for (14) is to check whether (14) holds for given matrix Y and, if it 

does not, to produce a cutting plane which is valid for all matrices satisfying (14) but not 

13 



for the given matrix. In the following we show that (14) behaves well algorithmically and 

we give two choices for S and io with the property that the resulting constraint (14) is valid 

for our higher dimensional representations. 

Theorem 4.1   The separation problem for (14) can be solved in polynomial time. 

Proof. Suppose we are given Y and let io be some n x p matrix formed from elements of 

Y, p < n. Since S y 0 we can write S = ZTZ for some matrix Z. Then Y satisfies (14) if 

and only if 

uT{Y - YQSY?)u   > 0   for all u e &n, \u\ = 1 (15) 

i.e. 

Y o uuT - \ZY0u\2   >0   for all u € 3£n, |«| = 1 (16) 

where o denotes the inner product of matrices. For a moment, let us fix u, and let a = ZY0u. 

An elementary calculation shows that 

- H2 = min{2Ara + |A|2 -.XeW1} (17) 

where the minimum is attained for A = —a. Thus (16) is equivalent to 

mm{YouuT + 2\T(ZY0u) + \\\2:\eW}    >0   for all u e &n, \u\ = 1 (18) 

which is the same as 

YouuT + 2XT(ZY0u) + |A|2   > 0   for all u € 3ftn, \u\ = l,for all A e &n. (19) 

Thus, (19) is a linearized form of (14), and separation goes as follows: 

1. Find u € &n, \u\ = 1, s.t. uT{Y - Y0SY?)u < 0 . If no such u exists, Y - Y0SY* h 0. 

This step is of order n3 since it amounts to performing Gaussian elimination, see [5] 

page 295. 

2. If u exists, find A s.t. 2XT(ZY0u) + |A|2 = \{ZYQu)\2 ( i.e. A = -(ZY0u) ). Then Y 

violates (19) with the above A and u. 

14 



Our first choice for S and Y0 which makes (14) valid for the higher dimensional relaxations 

is S = I,Yo = x. Thus we obtain the constraint 

Y - xxT y 0 (20) 

This constraint can be expressed in a different way, related to a construction of Loväsz and 

Schrijver. 

Proposition 4.2 Let Y be given, diag Y=x, 

\ x   Y 

Then Y - xxT >z 0 if and only ifY* h 0. 

Proof. Define the n by n matrix L as 

x-f1   ° 
\-x    I 

Since L is of full rank, clearly Y* is psd if and only if LY*LT is psd. However, it is easy to 

check that 
T      / 1 0 

\ 0   Y - xxJ 

thus the proposition follows. ■ 

The matrix F* is related to the work of Loväsz and Schrijver: in [6], they homogenize their 

lower dimensional formulation Ax > b into Ax - bx0 > 0. Thus by multiplying variables they 

obtain an n + 1 by n + 1 matrix having its first row and column equal to its diagonal. The 

top left element in the matrix is x0 = 1. Imposing psdness on this matrix thus is equivalent 

to our constraint (20). 

Our second choice for S and Y0 is S = (l/\c\2)BTB and Y0 = Y, where Bx < c is a 

system of inequalities valid for K, such that both B and c have nonnegative components. 

Proposition 4.3 Constraint (14) with the above choice of S and Y0 is satisfied byY = xx 

if x is a 0-1 vector satisfying Bx < c. 

15 



Proof. 

Y-YQSYO   =   xxT - (l/\c\2)xxTBTBxxT (21) 

=   (l-(l/|C|2)|2fc|2)xsr (22) 

Bx < c implies \Bx\2 < |c|2, thus the last expression is indeed psd. ■ 

A simple observation shows that we can use the psd constraint (14) in a restricted way: if 

in our higher dimensional formulations we do not have all possible variables j/^, 1 < i,£ < n, 

i.e. we only generated some elements of the n x n matrix F, all we must do is enforce psdness 

of the available principal submatrices. 

5     Generating Cutting Planes from Semi-Definite Con- 

straints 

In this section we address the question of generating cuts in the x-space, based on the positive 

semi-definiteness arguments developed in Section 4. 

Consider a higher-dimensional representation of our 0-1 program 

Dx + By>c (23) 

where the linear inequalities arise from Step 2 of Procedures 3 and from the valid constraints 

for the convex set defined by (14). Note that system (23) has infinitely many constraints. 

Nevertheless, for the sake of simplicity, we use the above matrix notation. 

The components y,j of the vector y can be viewed as elements of a square matrix Y with 

diagonal x. It was shown in Section 4 that the separation problem for the semi-definite 

constraints in (23) amounts to computing a minimum eigenvalue. In our computational 

experiments, we use the following version of the separation algorithm. 

1. Given (x,Y), find the smallest eigenvalue of Y — xxT. If it is nonnegative, Y — xxT >z 0. 

Otherwise, let v £ 3£n be a corresponding nonzero eigenvector. 

2. An inequality of (23) violated by (x, Y) is (Y - xxT) o vvT > 0. 

16 



Suppose that we would like to generate a cutting plane ax > ß in the space of the x 

variables from system (23). In the rest of the section we show that the separation algorithm 

will suffice to generate the columns of our cut-generation LP; as a by-product, we also get a 

nice interpretation of its dual. 

Assume that we are given a current fractional point, x. To derive a cutting plane of the 

form ax > ß (with a < 0 and ß < 0) which cuts off x by the largest amount, we must solve 

max   —ax -f- ß 

s.t.     a — uD     =   0 

uB =   0 (24) 

-uc + ß    <   0 

u>0. 

Suppose that we normalize our system by choosing ß = -1. Next, a can be eliminated 

from (24) to get 
max   u(—Dx) 

s.t.      uB =   0 

—uc <    1 

u >   0. 

(25) 

Consider the dual of (25), 

min   t 

s.t.     t >   0 

By-ct   >   -Dx 

(26) 

which can be rewritten as 

min   t 

s.t.     t >   0 

Dx + By   >   ct. 

(27) 

Comparing (23) and (27), we can interpret (27) as follows: Since we are able to generate 

a cut violated by x, there cannot be a y with (x,y) satisfying (23). Hence the system 

Dx + By > ct is infeasible for t = 1, and the minimum of t in (27) is attained for some 

t* > 1. The larger the value of t*, the larger the amount -(ax + 1) by which the point x is 

cut off by the inequality ax > -1. Thus we have the following duality relationship: 

17 



Theorem 5.1 {  The maximum amount by which ax > — 1 cuts off x equals 1 plus the 

minimum value of t for which the system Ax + By > ct becomes feasible. 

Also, (27) makes it clear how to generate a cut, even if (23) is only given by a separation 

oracle. Finding a column with negative reduced cost in (25) can be done by constructing a 

dual vector (t,y), then checking whether (t,y) satisfies the constraints of (26). This can be 

done using the same separation algorithm as for (23). 

6    Computational Experience 

The purpose of this section is twofold: First, we want to investigate the strength of our 

various cuts, in particular those obtained by using positive semi-definiteness. Second, we 

want to see how a general-purpose mixed integer programing code, using Procedure 1 in a 

branch-and-cut framework, performs on the maximum clique problem. We report on our 

computational experience with several instances from the testbed provided in the DIMACS 

Challenge. 

All experiments were performed starting from formulations FC(G) or SC(G) described 

in Section 1. The stable sets Sk, k = 1,... , m, covering the edges of G in the definition of 

SC(G) are generated using a greedy procedure. In the generic step of the procedure, called 

GENSTABLE, we have a family S = {Su ..., Sk-i} of stable sets. If (i,j) <£ E and no stable 

set of S contains both i and j, initialize Sk = {i,j}- Among the vertices of G which have 

no neighbor in Sk, select one with lowest degree in G, add it to Sk and repeat until Sk is a 

maximal stable set. Add Sk to S. 

6.1     Comparison of the cuts 

Before comparing alternatives for generating cuts, we first give a feel for the strength of the 

higher dimensional relaxations Mj(K), HS(K) and Hi...k(K). We illustrate the difference 

on the test problem hamming6-4. 

The gap closed by Procedure 1 was ^fffrf1 » 3%, that closed by Procedure 2 (|5| = 4) 

was 6.28-6.08 ~ 9% and that closed by Procedure 3 (|T| = 4) was 6f2;ff «17%. In all cases 

the choice of variables was based on their fractionality: we observed (and it is supported by 

18 



theoretical evidence [4], page 94) that using components of the current solution which are 

close to 1/2 usually gives the greatest improvements in Procedures 1-3. This example shows 

that substantial gains can be achieved by using the stronger formulations, and Procedure 3 

seems the most attractive. 

We conducted three experiments with Procedure 3 to generate cutting planes. In all 

cases we chose k = 6, Sj = {ij}, j = l,...,fc and T = {ii,...,ik}. That is, each of the k 

stable sets we multiplied by to obtain our higher dimensional representation, consisted of a 

single vertex. The above choice of k is justified as follows: it should be large enough, so that 

positive semi-definiteness can make a difference; and small enough so that the cut-generation 

linear programs can still be solved in a reasonable amount of time. 

Our test set contained six randomly generated graphs, three with 30 vertices and 20, 30 

and 40 % density, respectively, and three with 50 vertices and 15, 20 and 25 % density. 

Our first experiment was done without using semi-definiteness in the cut-generation. 

When we used FC(G) as our initial relaxation, in every case we obtained a cut that could 

be obtained with Procedure 1 with some {ij} for j G {1, ...,&}. These results are not 

surprising: As mentioned in Section 2, when K = FC(G), 

NT(K) = f)j€Tconv(K D {x : Xj € {0,1}}). 

Since our procedure generates facets of Nj{K) and the facets of NT(K) are facets of conv(KC\ 

{x : Xj £ {0,1}}) for some j € {1,...,&}, they are also obtainable by using Procedure 1. 

When we used SC(G) as our initial relaxation, we still observed the same behavior in most 

cases. 

In our second experiment we used semi-definiteness. First, we solved our initial LP- 

relaxation. Then we chose our 6 variables T to be as fractional as possible, and in a way 

that the corresponding vertices induced a dense subgraph. Our experience was that semi- 

definiteness did not improve our cuts in any of the cases, no matter whether our initial 

relaxation was FC(G) or SC(G). 

In our third experiment we also used semi-definiteness. Again, first we solved the initial 

LP-relaxation. Then our 6 variables T were chosen to be as fractional as possible, and such 

that the corresponding variables induced a sparse subgraph. Our experience is that semi- 

definiteness substantially improved our cuts, when our initial relaxation was FC(G). In 

Table 1 we show the improvement in the depth of the generated cuts, averaged over 4 cuts, 

19 



Vertices Density Depth without PSD Depth with PSD 

30 20 0.5 0.516 

30 30 0.5 0.791 

30 40 0.5 1.0 

50 15 0.5 0.58 

50 20 0.5 0.732 

50 25 0.5 0.903 

Table 1: Improvement in cut-depth using positive semi-definiteness 

when our initial relaxation was FC(G). (The depth of a cut ax > ß is the euclidean distance 

between the point x it is designed to cut off, and the hyperplane ax = ß). With our initial 

relaxation chosen as SC(G), the improvements were marginal, or nil. 

We summarize the results of this section as follows. Substantial gains can be achieved by 

using tightening Procedure 3 as compared to Procedure 1, as is examplified by our results 

on hamming6-4. Unfortunately, these encouraging results do not translate into substantially 

better cuts. In other words, even though the set NT(K) is a tighter relaxation than Pj(K), 

the facets of NT(K) are often not better than those of Pj(K) when used individually as cuts. 

The situation improves somewhat with positive semi-definite cuts but not enough to justify 

the substantial extra computing time. As a consequence, we settled on the cuts generated 

from Procedure 1 for our more extensive computational study. 

6.2    Results with Procedure 1 

The lift-and-project cutting planes associated with Procedure 1 are incorporated into a 

branch-and-cut algorithm. The resulting code, called MIPO, can solve general mixed 0-1 

programs, and is described in [2]. In order to apply it to the maximum clique problem we 

first use the heuristic GENSTABLE described earlier to generate a cover of the nonedges by 

stable sets. Then we apply MIPO to this formulation. The results are shown in Table 2. 

Times are in seconds on an Apollo desktop workstation HP720. 

The following observations can be made from this table. 

20 



For the instances which have a large maximum clique, MIPO did relatively well. Specifi- 

cally, for the nine instances in Table 2 which have a maximum clique of size greater than 40, 

only two instance took more than 800 seconds. On the other seven instances, MIPO only 

took an average of 210 seconds. This is in contrast to the behavior of several other exact 

algorithms, which tend to deteriorate when the size of the maximum clique increases. 

In 40 % of the instances, GENSTABLE generated a formulation with no integrality gap, 

resulting in excellent computing times. For the problems where cuts were required, the 

computing times were significantly greater. But remember that MIPO is a general purpose 

mixed integer program optimizer. We did not taylor it in any way for the maximum clique 

problem. 

One aspect of this class of integer programs is that LP-relaxations tend to have highly 

fractional solutions. As a result, we can rarely take advantage of the lifting step described in 

[2], where the cuts are generated in the space of fractional variables of the current solution, 

then lifted into the whole space. 

It is clear from Table 2 that the cuts are working: only five problems required more than 

300 cuts and nodes in the branch-and-cut tree. The main drawback is the computing time 

required to generate the cuts. Thus there is a need to address the question of finding faster 

cut-generation heuristics. An attractive direction for future research would be to generate 

cutting planes in subspaces of variables defined by relatively small subsets of vertices, instead 

of the full space as is currently the case with MIPO. 

21 



Problem Vertices Edges Density Clique MIPO MIPO CPU 

name Size Cuts Branches Time 

brock200-2 200 9876 50% 12 5140 8746 28000 

c-fat200-l 200 1534 8% 12 120 80 730 

c-fat200-2 200 3235 16% 24 20 2 370 

c-fat200-5 200 8473 43% 58 60 46 2000 

C125.9 125 6975 90% 34 1640 3244 2400 

gen200-p0.9-44 200 17910 90% 44 174 240 670 

gen200-p0.9-55 200 17910 90% 55 0 0 10 

hamming6-2 64 1824 90% 32 0 0 0.13 

hamming6-4 64 704 35% 4 75 54 16 

hamming8-2 256 31616 97% 128 0 0 1.5 

hamming8-4 256 20864 64% 16 78 100 1500 

johnson8-2-4 28 210 56% 4 0 0 0.01 

johnson8-4-4 70 1855 77% 14 0 0 0.15 

johnsonl6-2-4 120 5460 76% 8 0 0 0.09 

keller4 171 9435 65% 11 2398 4104 6100 

p-hat300-l 300 10933 24% 8 4921 9466 49000 

randl00.90 100 4455 90% 35 56 72 27 

randl00.95 100 4703 95% 52 0 0 0.14 

rand200.95 200 18905 95% 70 2889 4822 7500 

san200-0.7-l 200 13930 70% 30 0 0 11 

san200-0.7-2 200 13930 70% 18 56 38 280 

san200-0.9-l 200 17910 90% 70 0 0 2.6 

san200-0.9-2 200 17910 90% 60 0 0 7.8 

san200-0.9-3 200 17910 90% 44 279 246 780 

san400-0.5-l 400 39900 50% 13 39 18 4400 

san400-0.7-2 400 55860 70% 30 216 162 26000 

Table 2: Runs obtained using the cuts of Procedure 1 

22 



References 

[1] E. Balas, S. Ceria and G. Cornuejols, A lift-and-project cutting plane algorithm for 

mixed 0-1 programs, Mathematical Programming 58 (1993) 295-324. 

[2] E. Balas, S. Ceria and G. Cornuejols, Lift-and-project in a branch-and-cut framework, 

GSIA working paper (1994). 

[3] E. Balas and R. Jeroslow, Strengthening cuts for mixed integer program, European 

Journal of Operations Research 4 (1980) 224-234. 

[4] S. Ceria, Lift-and-project methods for mixed 0-1 programs, PhD dissertation, Carnegie 

Mellon Unversity (1993). 

[5] M. Grötschel, L. Loväsz and A. Schrijver, Geometric Algorithms and Combinatorial 

Optimization, Springer-Verlag, Berlin (1988). 

[6] L. Lovasz and A. Schrijver, Cones of matrices and set-functions and 0-1 optimization, 

SIAM J. Optimization 1 (1991) 166-190. 

[7] H. Sherali and W. Adams, A hierarchy of relaxations between the continuous and convex 

hull representations for zero-one programming problems, SIAM Journal on Discrete 

Mathematics 5(1990) 411-430. 

23 


